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ABSTRACT

This paper reports, for the first time, an aptamer-based nanopore thin film sensor for

detecting the ophylline in buffer and complex fluids. In my experiments, I created the sensor

and found that it could help us to better test theophylline than an antibody-based detection

sensor. The following is a detailed explanation of the sensor creation and the experimental

process.

Anodic aluminum oxide (AAO) has been investigated and applied in numerous products

since the 1970s. It is a highly-arrayed porous nanostructure as shown in Figure 1. The pore size

normally ranges from tens to hundreds of nanometers, and the aspect ratio could be higher than

40:1. Application areas of AAO include biomedical sensing, energy storage, template-based

nanofabrication, electronics, etc. In my experiment, I applied AAO to the process of creating a

sensor.

Figure 1. The structure of AAO

In my experiments, I chose RNA aptamer rather than antibodies because its molecules

overcome the weakness of antibodies. The 33 nts RNA aptamer sequences used were found to

recognize and selectively bind theophylline (Figure 2) [1]. Moreover, aptamers are easy to

synthesize, have both excellent heat stability and a wide tolerance range of PH and salt
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concentration, and is much less costly than antibodies.

Figure 2. Theophylline-binding RNA aptamer seuqence

The first study used an aptamer-based nanopore thin film sensor to detect theophylline in

the buffer and complex fluids. I first fabricated the nanopore thin film sensors with a

microfluidic interface, then demonstrated the surface functionalization procedure of the sensor.

I then used optical transducing signals to detect the fringes followed by using the sensor as a

reference sensor to further cancel out the non-specific binding effect; theophylline in low

concentration (0.2µM), caffeine, theobromine, and plant extract were successfully detected.

The experiment showed that this aptamer-based sensor had good specificity and selectivity,

allowing me to further test theophylline in serum.

The second study used an optical aptamer-based plant hormone sensor with a

microfluidics capillary interface. I adopted the exact same methodology and sensor from

themy first study and further designed an optical aptamer-based sensor with a microfluidics

capillary interface to upgrade the testing process. Such a microfluidics capillary interface

allows samples to be automatically delivered to the sensor without use of external pumps.

This explains how the aptamer-based nano thin film censor was created and how my two
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successful experiments were performed. The research outcome is that an aptamer-based

label-free sensor for optically detecting theophylline has been demonstrated for the first time.

It performs much better than its competitors and has a promising future in further applications

in similar experiments.
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CHAPTER 1. GENERAL INTRODUCTION

Research Motivation

Theophylline (TP) is a drug used for treatment of respiratory diseases such as asthma

through its bronchodilatory effects [2], but TP levels within the body must be quickly and

regularly monitored since it has a narrow safety range, i.e., within 20µM to 100µM [3].People

usually use blood samples to monitor TP levels in current clinical practice; is very important to

monitor theophylline level in blood because it is toxic at higher levels and can cause severe and

protracted vomiting , acute overdose, chronic overdose, sustained-release preparation,

immediate-release preparation, and permanent neurological damage.

Current widely-used laboratory procedures for theophylline detection include

radioimmunoassay [4], high performance liquid chromatography [5], and fluorescence

polarization immunoassay [6], all of which suffer from interference, primarily from

structurally closely related caffeine and theobromine that can result in overestimated

serum/plasma theophylline concentrations. These methods also require skilled personnel,

sample pre-treatment, and long analysis times [1]. Current laboratory procedures use

antibody-based sensing to detect the theophylline. This type of sensing exhibits some

weaknesses such as being labor-intensive, very expensive, and easily susceptible to

irreversible denaturation[7].

To address these issues, we introduce a new type of aptamer-based label-free sensor for

optically detecting theophylline to be reported and demonstrated for the first time. The

advantages of our method include good selectivity, specificity, high stability, and

cost-effectiveness.
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Thesis Organization

Chapters 2 and 3 discuss the research goals outlined above. Chapter 2 specfically

describes the operational principles of aptamer-based nanopore thin film sensors, sensor

fabrication, and the experimental procedure used. Chapter 2 also describesresultsrelated to

detectionof concentrations of theophylline in caffeine, theobromine, and plant extract.

Chapter 3 describes further experiments in testing the concentration of theophylline for

0.2µM, 1µM, 2µM, 4µM, 8µM, 16µM, 32µM and 48µM. Each concentration test was

repeated I 5 times, followed by testing 0µM, 4µM, 40µM theophylline dissolved in Newborn

Calf Serum.

Chapter 4 describes the design and the process flow used to fabricate the sensor.Appendix

A gives more details regarding the principle underlying the process of surface

functionalization and detection and provides a more detailed description of the nanopore thin

film sensor fabrication process. Appendix B provides a schematic view of four masks.

Appendix C gives fabrication details of the AAO.
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CHAPTER 2. RAPID DETECTION OF THEOPHYLLINE USING

AN APTAMER-BASED NANOPORE THIN FILM SENSOR

Modified from a paper submitted to IEEE-Sensors

Silu Feng, Xiangchen Che, Long Que, Changtian Chen, Wei Wang

Abstract

This paper reports, for the first time, an aptamer-based nanopore thin film sensor for

detecting theophylline in buffer and complex fluids. Compared to antibody-based detection,

aptamer-based detection offers many advantages such as low cost and high stability a t

elevated temperatures. Experiments found that this type of sensor, without any optimization,

can detect the theophylline at a concentration as low as 0.2µM, which is comparable to the

detection limit of current lab-based equipment such as liquid chromatography(LC).

Experiments also demonstrated that the aptamer-based sensorh as good specificity and

selectivity. By using some nanopore thin film sensors as there ference sensors to further can

celout the non-specific binding effect, the theophylline in plant extract as been detected

successfully.

Introduction

Theophylline(TP) is a drug used for treatment of respiratory diseases such as asthma due

to its bronchodilatory effects [1]. But the TP levels with in the body should be monitored quickly

and regularly since it as a narrow safety range[2].For instance, blood samples from patients are

usually used to monitor the TP levels in current clinic practice. However, such blood samples

are each usually in excess of25 mL, and more than one sample is required for the tests. Hence

it becomes problematic for patients to provide the se regular blood samples. Since it is very
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important to monitor theophylline level in blood because of its toxicological effects, ideally a

sensor, which can detect the theophyllineon-site with small sample sizes(<100µL or lower),

becomes increasingly critical.

Current widely-used laboratory procedures for theophylline detection include

radioimmunoassay[3], highper for mance liquid chroma to graphy [4],and fluorescence

polarization immunoassay [5], but the methods usually require skilled personnel, sample

pre-treatment, and long analysis times. To address the issues, different types of sensors have

been developed. Examples include studying the electrochemical oxidation of the theophylline

by using a variety of electrode substrates [6-7]. All these reported technologies have their own

advantages and disadvantages.

The use of antibody-based sensing has been available for more than three decades. In

recent years, aptamers are widely known as a substitute for antibodies, because the some

molecules over come the weaknesses of antibodies[8]. Specifically, aptamers have very good

heat stability, easeofsyn thesis, cost-effectiveness, and a wide tolerance range of pH and salt

concentration. On the other hand, aptamers offer a similar, if not better, specificity and affinity

to antibodies. Finally, aptamers can also be being reversibly denatured for the release of target

molecules. All these features make them perfect receptors for biosensing applications. Herein,

a new type of aptamer-based label-free sensor for optically detecting the theophylline is

reported and demonstrated for the first time.

Principle of the aptamer-based sensor

The sketch and operational principles of the aptamer-based nanopore thin film sensor are

illustrated in Fig.3. The nanopore thin film is basically anodicaluminum oxide(AAO). Inside

AAO thin film there are periodically distributed nanopores [9]. Typical size of then a nopore
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can be from 20nm to150nm. Both nanopore size and the interspace among nanopores can be

adjusted readily by modifying the process parameters for fabricating AAO during the

anodization step. To detect theophylline, the AAO nanopore surface of each sensoris

functionalized with the theophylline-binding RNA aptamer. Since the RNA aptameris

theophylline specific, it can only capture the theophylline. The optical signal (interference

fringes) from the sensor under goes variation when the theophylline is bound to the aptamer.

More specifically, as shown in Fig.3, the optical interference fringes reflected from the sensor,

the transducing signal of the sensor, result in shift before and after the theophylline is bound to

the aptamer[10-11].

Figure 3. (a) Sketch and operational principle of an aptamer-based nanopore thin film

sensor; (b) SEM image of the AAO nanopores in the thin film

Sensor fabrication and experimental procedure

Sensor fabrication

The sensor was fabricated using the process flow developed in our lab, described in detail

in citation [9]. The basic process flow is illustrated in Fig. 4(top). Briefly, after a 5-minute
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baking of the rigorously cleaned cover slip glass substrate, an aluminum (99.999%) layer about

2-3 µm thick is deposited by E-beam evaporation. Then a one-step anodization process in acid

solution (0.3 M oxalic acid) with 45 V DC voltage at 2 C to form AAO on the glass substrate

is carried out as shown in Fig. 2(top-c). As a result, a layer of AAO is formed on the whole

glass substrate. Thereafter, photolithography is performed on the Al-coated AAO substrate.

The patterns are then transferred to the Al layer by etching the unprotected Al area in an

etching solution {(H3PO4:CH3COOH:HNO3:H2O) 80:5:5:10 by weight %} for 35 s. The

patternedAl thus is used as the mask, the substrate is immersed in a mixture of phosphoric acid

(0.4 M) and chromic acid (0.2 M) at 20 °C for 100 minutes to etch away the unprotected AAO

and transfer the Al patterns into the AAO layer. Finally, the Al is etched away, and then AAO

nanopore thin film sensors are fabricated after a layer of 10 nmAu is coated on AAO surface.

A photo of a fabricated chip consisting of 15AAO nanopore thin film sensors with a

microfluidic interface is shown in Fig.4(middle).

Surface functionalization and detection

The Au-coated sensor surface is functionalized with the theophylline aptamer through

1-ethyl-3-(3- dimethylaminopropyl) carbodiimide (EDC)/N- hydroxysulfosuccinimide (NHS)

chemistry as shown in Fig.4(bottom).More specifically, the Au-coated sensor surface is

immersed in the10mMHSC10COOH/HSC8OH solution for 30min and then washed with

ethanol and DIwater.After the surface is dried, the surface is immersed in a solution of NHS and

EDC (NHS0.2M,EDC 0.05M)for30min. Thes ensor surface is then washed with DI water
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Figure 4. (top) Fabrication process flow of the nanopore thin film sensor; (middle) photo
of 15 fabricated nanopore thin film sensors with microfluidic interface; and (bottom)

illustration of the surface functionalizaion procedure of the sensor

and then immersed in the 5µM aptamer solution over night. This is followed by loading of

100μL1 Methanolamine (EA)to block then on-occupied MPAsites activated by theEDC/ NHS,

followed by aninjectionof 100 μL of 100mM phosphoric acid(PPA) to remove then on-

specific binding. Finally, the sensor surface is rinsed with the PBS buffer to flush off

non-specifically adsorbed proteins. At this stage, the sensor is ready for them measurement.

For all there ported measurements in the following section, after the samples are applied

to the sensor and incubated for 30-50 min, a three-time vigorousrinsein a running PBS buffer
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to remove the unbound samples on the sensor surface is carried out, followed by three optical

measurements. The results are the average values from the three measurements.

Results and discussion

Typical optical transducing signals from a sensor before and after applying the

theophylline (TP) are shown in Fig. 5. In this case, the theophylline is in PB buffer. The optical

interference fringes exhibit clear shift. As expected, the higher the concentration of the

theophylline, the larger shift of the fringes. Note that no further shift can be observed once the

binding sites of the aptamer have been totally occupied by theophylline. For current sensor

without any design changes, up to 100 µM of theophylline can be detected.

Figure 5. Typical measured optical signals for theophylline (TP) in PBS buffer at

concentrations of 0.2 µM and 4 µM: interference fringes’ shift increases with TP

concentration

On the other hand, it has been found that the concentration of the theophylline of 0.2 µM
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can be detected readily by the sensor (Fig. 5). This concentration is closed to the detection limit

of current equipment such as liquid chromatography. Note that the detection limit of the sensor

can be further improved by modifying the nanopore size and density, which is under

investigation in our lab.

The specificity of the sensor has also been evaluated. In this case, instead of applying

theophylline, caffeine and theobromine, usually associated with theophylline, are applied on

the sensor. For instance, the measured optical signals for theobromine(TB) are given in Fig. 6.

As can be seen, the fringes shift is ~0.15 nm when only theobromine is applied. In contrast, the

fringes shift is much more pronounced about ~4.0 nm when 40 µM theophylline is added to the

theobromine solution. Similar results have been obtained for caffeine, suggesting the good

specificity of the aptamer-based assay.

Figure 6. Measurements for non-specific binding result for theobromine (TB),
concentrations of theophylline in theobromine of 0 µM and 40 µM.

However, even though the non-specific binding for both theobromine and caffeine is

small, but the optical fringe shift still exists. In order to further cancel out the non-specific

binding effect in the measurements, first, the reference sensor is used to calibrate the shift due

to the non-specific binding. Then, the pure shift due to the theophylline is obtained by
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subtracting the shift of the reference sensor from the measurements of the theophylline in

complex fluids.

Figure 7.Optical response: Fringes shift for different concentration of theophylline (TP)
in caffeine before and after the calibration

The optical signals for theophylline in caffeine is given in Fig. 7. As shown, even without

theophylline in caffeine, the shift is ~0.5 nm, again indicating the small non-specific binding

exists between the aptamer and caffeine as expected. Using the shift with only caffeine as a

reference, the calibrated curve can be obtained as shown in Fig. 7.

Figure 8. Optical response: Fringe shift for different concentration of theophylline
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(TP) in plant extract with MeOH before and after the calibration.

Finally, the measurements of theophylline dissolved in plant extract are given in Fig. 8. As

shown, some levels of the non-specific binding between aptamer with plant extract exist.

Nevertheless the calibrated measurement indicates the sensor can detect theophylline in plant

extract successfully.
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CHAPTER 3. ADDITIONALWORK RELATED TO RAPID

DETECTION OF THEOPHYLLINE USING AN APTAMER-BASED

NANOPORE THIN FILM SENSOR

Abstract

This reports describes additional work related to an aptamer-based nanopore thin film

sensor for detecting theophylline in different concentrations and testing the influence of

theophylline in serum. It alsodescribes determination of binding kinetics for duration times

ranging from 1 minute to 2 hours to find the fit incubation time. The experiments found that an

aptamer-based sensor can detect theophylline at concentrations as low as 0.2 µM and as high as

48 µM and also that an aptamer-based sensor can detect theophylline in serum..

Introduction

The first experiment was to test the theophylline dynamic range achieved in using

anaptamer-based sensor. First the different concentrations of theophylline were tested, then all

the shifts and averages for each concentration were calculated. The process requires adding a

theophylline solution to the sensor followed by incubation for 2 hours. Since we wanted to see

whether a 2 hourreaction time was necessary, twe wanted to determine the binding kinetics.

Since the final goal was to use an aptamer-based sensor to detect the concentration in serum,

the last experiment involved detection of the theophylline dissolved directly in Newborn Calf

Serum.

Assess theophylline sensitivity and dynamic range

In this experiment, the concentration of theophylline for 0.2µM, 1µM, 2µM, 4µM, 8µM,
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16µM, 32µM and 48µM was tested, with eachtest repeated 5 times. Table 1 shows the average

shift of the fringes at each concentration. As expected, the higher the concentration of

theophylline, the larger the shift of the fringes, as shown in Figure 9.

Table 1. Average fringe shifts for each concentration of theophylline

Concentration(µM

)

0.2 1 2 4 8 16 32 48

Average shift 0.553 2.233 2.548 3.448 3.536 3.695 4.253 4.457

Figure 9. Plot for average fringe shifts VS Concentration of theophylline

Table 1 shows that in 0.2µM theophylline, the shift is about 0.553. Experiments found

that the aptamer-based sensor, without any optimization, can detect theophylline at a

concentration as low as 0.2µM, a level comparable to the detection limit of current lab-based

procedures such as liquid chromatography (LC). Note that the detection limit of the sensor can

be further improved by modifying the nanopore size and density.

Figure 9 clearly shows that, as the concentration increases, the shifts become larger.
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Determination of Binding Kinetics

The process is described in Chapter 2 with specific details given in Appendix A. The last

step is adding the theophylline solution on the aptamer-based sensor followed by an incubation

of 2 hours ensure that make sure the reaction is complete. To shorten the incubation time,

48µM of theophylline was used to test the duration. The tested binding duration times were

1,2,10,15,30,60,and 120 minutes. More specifically, after each duration time, a PB buffer was

used to rinse the aptamer-based sensor, followed by waiting for it to dry and then test the

fringes shift. Figure 10 shows the fringes shift values recorded. Table 2 shows the number of

shifts for each duration time, and Figure 11 is a graph showing the trend. As can be seen in

Figure 11, after 1 hour the shift becomes saturated, indicating that the reaction was totally

finished after about 1 hour, so the duration time can be reduced from 2 hours to 1 hour.

Figure 10. Fringes at each duration time

Table 2. Fringe shifts in each duration time

Duration time

(mins)

1 2 10 30 60 120

Shifts (nm) 1.001333 1.398 2.397 2.5296667 3.1943333 3.3946667
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Figure 11. Duration time VS Fringe shift.

Test Influence of Serum

After successful detection of the theophylline in caffeine, theobromine, and plant extract

an attempt to detect the theophylline dissolved in serum was made. The experiment involved

detection oflevels of 0µM, 4µM, and 40µM theophylline dissolved in Newborn Calf

Serum(NBCS). The reason for choosing Newborn Calf Serum was that newborn calf serum

collected from calves typically 20 days old or younger are processed and manufactured in New

Zealand, and each lot of newborn calf serum is tested for its ability to support the growth of

VERO cells over three subcultures. At each passage, the cells sub cultured to the original

cell-inoculation density [1]. However, even thoughNewborn Calf Serum contains a complex

array of protein components required by many cells to grow, unfortunately large quantities of

undefined proteins can lead to undesired stimulation of cells [2].To avoid such other proteins

affecting the result of the experiment, after the reaction the apatamer-based sensor was rinsed

five times.Figure 12throughFigure 14 show the fringe shift for 0µM, 4µM, and 40µM
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theophylline dissolved in Newborn Calf Serum.

Figure 12. 0µM theophylline dissolved in NBSC. Compared by aptamer, serum and after

rinse

Figure 13. 4µM theophylline dissolved in NBSC. Compared by aptamer, serum and after

rinse
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Figure 14. 40µM theophylline dissolved in NBSC. Compared by aptamer, serum and

after rinse

Figure 12shows that, after the rinse, the fringes are close to those of the fringe for aptamer,

meaning that if no theophylline is found in in the NBSC, the aptamer-based sensor cannot

detect anything. Comparing Figures 13 and 14 shows that the fringes are obviously shifted.

This experiment demonstrates that an aptamer-based sensor can detect only the theophylline

with high selectivity. These measurements were followed by calculating results for the average

values (Table 3). According to the data from Table 3,the shift between 4µM and 40µMhad a

very small small difference. Since NBSC consists of many different proteins and impurities

that can affect the results of the experiments, the aptamer-based sensor’s specificity was

reduced.

Table 3. Shift with different theophylline concentration dissolved in NBSC

Concentration (µM) 0 4 40

Shift (nm) 0.8 4.277 4.395333333

To solve this problem, the experiments for 4µM and 40µM theophylline dissolved in
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NBSC were redone, this time using Newborn Calf Serum diluted 20 times by PBS buffer to

reduce impurities. The resulting shifts are shown in Table 4. Comparing the data from Table 3

and Table 4 shows that, after dilution in NBSC, the shift became smaller, indicating reduction

in impurity level. The difference in shift between 4µM and 40µM theophylline increased from

0.1183nm to 0.21107nm.

Table 4. Shift with different theophylline concentration dissolved in NBSC that diluted

20 times by PBS buffer

Concentration (µM) 4 40

Shift (nm) 3.0396 3.250666667

However, the shift difference is still very small, perhaps because using different types of

AAO led to a thickness change in AAO. Since the aptamer-based sensor selectivity is due to

the AAO thickness, using a different AAO thickness would result in different selectivity.

To determine whether thickness is the reason for this problem, two control experiments

were designed. The first experiment used the same AAO thickness to test both 40 µM

theophylline solution and 40 µM theophylline dissolved in serum. The second experiment used

different thicknesses of AAO to test 40 µM theophylline dissolved in serum. Comparing both

fringe shift from both experiments should make it easy to determine the main source of the

problem.
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CHAPTER 4. DETECTION OF PLANT HORMONE ABSCISIC

ACID (ABA) USING AN OPTICALAPTAMER-BASED SENSOR

WITH AMICROFLUIDICS CAPILLARY INTERFACE

Modified from an abstract to be submitted to MEMS-Biosensors and Bioreactors

Chao Song, Xiangchen Che, Silu Feng, Long Que

Abstract

This paper reports for the first time an optical aptamber-based plant hormone sensor with

a microfluidics capillary interface. The ssDNA aptamer-based sensor has sensitivity with

excellent specificity for detecting abscisic acid (ABA) superior to that of the ELISA detection

kit from Sigma, reflecting its potential for screening different plant hormones in a complicated

matrix. Its microfluidics capillary interface also allows samples to be automatically delivered

to the sensor without use of external pumps, paving the way for point-of-care application in the

field.

Instruction

Most physiological and development processes in plants are regulated by plant hormones,

small molecular natural products including auxins, cytokinins, gibberellins (GA), abscisic acid

(ABA), ethylene, etc. [1]. It is important to quantitatively analyze plant hormones for in-depth

study of their biosynthesis, transport, metabolism and molecular regulatory mechanisms.

Current widely-used laboratory procedures for detecting plant hormones include

radioimmunoassay, enzymelinked immunosorbent assay (ELISA), chromatography, and

chromatography/mass spectrometry [1-3]. These methods usually require skilled personnel

and long-time analysis at high cost, hence are not suitable for point-of-care (POC) testing in
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the field. Electrochemical techniques represent an alternative approach promising simplicity,

convenience and low cost [1], but poor stability and reproducibility are hurdles to their wide

application in practice. Presently, electrochemical biosensors remain at an early stage of

methodology for detecting plant hormones.

For this experiment, the main differences from procedures of Chapter 2 arethe design of a

microfluidics capillary interface allowing samples to be delivered to the sensor, and testing the

plant hormone abscisic acid(ABA).

This chapter will introduce what the microfluidics capillary interface, the mask schematic,

and the fabrication process.

Microfluidics Capillary Interface

Microfluidic devices are promising for applications that require precise displacement of

small amounts of liquids or that can benefit from peculiar behaviors that liquids and chemical

reactions exhibit at micrometer length scale [4]. A microsystem is typically composed of three

major components: impedance microsensors, open-channel capillary micropumps, and passive

microfluidic stop-valves [5].

In our device, we focused on capillary micropumps and passive microfluidic stop-valves.

Capillary pumps are comprised of microstructures of various shape with dimensions from

15-250 µM, and positioned in the capillary pumps to encode a desired capillary pressure. The

capillary pumps are designed to have a small flow resistance and are preceded by a constricted

microchannel that acts as a flow resistance [6]. The passive stop-valve array prevents the liquid

from getting into an undesired part of the platform because of a sharp change in the

liquid-sidewall angle [5].

As will be shown below, a flow resistance in front of the capillary pump can also be used
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in capillary pumps to modulate the filling behavior of liquids. The flow rate Q of a liquid in a

CS is determined by the wettability of the CS, the viscosity of the liquid, the total flow

resistance, and the capillary pressure in the capillary pump, and can be expressed as

(1)

where η is the viscosity of the liquid, the difference in pressure inside and in front of the

liquid. the total resistance to flow of the flow path, a microchannel of variable length

dominates the flow resistance. The resulting pressure of a liquid-air meniscus in such a

rectangular microchannel is

(2)

where is the surface tension of the liquid, are the contact angles of the liquid on the

bottom, top, left, and right wall, respectively, and a and b are the depth and width of the

microchannel, respectively [6]. The flow resistance of such microchannels is a geometric term

expressed as a Fourier series and can be approximated by a linear term [7].

(3)

satisfying the condition, a, b. Here L is the length of the microchannel and is the hydraulic

radius of the microchannel,

(4)

with P being the perimeter and A the area of the cross section of the microchannel. The

flow in a microchannel can thus be estimated using the capillary pressure divided by the flow

resistance that continually increases as the channel is being filled [6].
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Microfluidics capillary fluidic chip design

Mask design is the first step in designing a microfluidics capillary fluidic chip,. I used

L-edit and Auto-CAD to draw the layout. These two familiar software tools are commonly

used for layout, with L-edit often used for transistor design.

Figure 15. Layout for microfluidics capillary fluidic chip by Auto-CAD

The microfluidics chip consists of six main parts: pillar, pump, stop-valve, space for AAO,

input, and output. Each pump consists of arrays of pillars. As shown in Figures 15 and Figure

16, once the solution passes into the chip at input 1, it would cross pump 1 slowly to reach the

space where the AAO is located. After the solution passes through the AAO space , it reaches

to the stop-valve where it is stopped and lo longer flows. After the reaction between solution

and AAO is finished, I a solution is introduced into input 2 to rinse the chip, after which the

fluid would go through to the pump 2. At this time, since the pressure in pump2 and the

stop-valve become equal, the solution stopped at the stop-valve would go through to pump2.
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Finally, all the fluids would flow out. Three inputs were used because several different

solutions had to be added.

Figure 16. Layout for Microfluidics capillary chip by L-edit

To ensure that the mask would work properly, 4 different size of pillars were included.

The mask should be designed to fit on a 1 inch * 3-inch wafer. Figure 17 shows the shapes and

size of the pillars for mask 1 through mask 4. Figures 18 through 20 show the the detailed

schematic for mask 1; the other three masks are similar to and their schematics are shown in

Appendix B. Pump 1 consisted of fifteen repeated arrays of fifteen pillars. The space between

the two arrays is 200 µm, shown for pump1 in Figure 4. Pump 2 is quite similar to pump 1.

Pump 2 used 20 pillars repeated in 30 arrays as shown in Figure 19. Finally, the stop-valve

was designed; 8 repeated stop-valve unit are shown in Figure 20. Total area of the AAO is

20000 * 20600 µm. The actual version is shown in Figure 21.
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(a)Pillar size for Mask 1 (b) Pillar size for Mask 3

(c)Pillar size for mask 2 (d) Pillar size for mask 4

Figure 17. Pillar’s shape

Figure 18. Pump1

200*800 µm 350*700 µm

280*600 µm 150*500 µm
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Figure 19. Pump 2

(b)

Figure 20. (a) the shape and size for unit stop-valve. (b) the array of stop-valve.

800 µm

2470 µm

1200 µm

2400 µm
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Figure 21.Actual Mask.

Microfabrication

Themicrofluidics capillary chips were fabricated in AAO using photolithography and

etching. The fabrication process is comprised of the five main steps shown in Figure 22. They

are: a) E-beam Al deposition (100nm); b) AZ-5214 positive photoresist as protection layer; c)

Photolithography and Al/AAO etching to form the AAO pattern; d) SU-8 negative photoresist

apply; e) Photolithography to form the final SU-8 pattern.

Aluminum Etching

To etch aluminum, there must be a mask covering the aluminum plane photoresist. Az

was used as the mask because it is very easy to use photolithographic processes to make an Az

mask and that mask can be rinsed in acetone after etching aluminum. The detailed process is:

1. Clean the wafer prior to starting processing with IPA and Ethanol.

2. Put wafer in spinner, first drop HMDS and set spin speed to 4000 rmp for 20 seconds.

After spreading out the HMDS, drop Az to cover whole aluminum area and set speed to 4000

rmp for 45 seconds. Spin to speed out Az to obtain a 1.2um thickness Az plane.

3. Pre-bake the wafer at 95° C for 1 minute.
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4. Place the mask over theAz plane and expose the wafer to UV light at 10 intensity for 20

seconds.

5. Postbake the wafer at 120° C for 2 minutes.

6. Pour some Az developer into a glass dish. Place the wafer in the developer and gently

agitate the developer for about 60 seconds.

7. Clean the Az developer with water.

8. Pour someAluminum Etchant TypeA into a glass dish. Place the wafer in the developer

and gently agitate the developer for about 1 hour.

9. Rinse the Az mask with acetone 10. Bake the wafer at 85° C to dry the surface.

While etching aluminum, we must be very careful about exposure and development time.

If exposure time is too short, the masked features will come off during development, and

similarly, if the development time is too long, the feature will also come off.

Figure 22. Fabrication process

SU-8 Spin-coating & Photolithography

SU-8 is a commonly used epoxy-based negative photoresist. A negative photoresist is one
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for which the parts exposed to UV become cross-linked while the remainder of the film

remains soluble and can be washed away during development. (2) The process of spin-coating

is followed by using the following standard instructions:

1. Wash the silicon wafer using DI water and ethanol. Then use an air gun to dry it, and

oven-bake at 100 degrees for 3 minutes.

2. Spin the SU-8 on the silicon with rotation speed of 1100rpm/s.

3. Pre-bake the wafer at 65 degree, increase the temperature at the rate of 10 degree per 10

minutes to 95 degrees, and bake for 90 minutes.

4. Put the mask on the silicon wafer and expose with the UV central intensity set at

10mW/ for 60 seconds.

5. Post-bake (or soft bake) at 65 degrees for 12 minutes, increase the temperature at a rate

of 10 degree per 3 minutes to 95 degrees, then bake for15 minutes.

6. Use SU-8 developer to develop the wafer for 15 minutes.

7. Wash with by IPA to see if there is any white floccule in the cube. If nothing is seen, the

un-illuminated part has been totally removed.

8. Rinse the wafer using ethanol and DI water, then use anair gun to dry it.

9. Bake the wafer at 85 degrees for 6 minutes to keep the surface dry.

PDMS molding and bonding

PDMS is a highly viscous flowing liquid that helps form internal cross links that turn the

PDMS into a flexible solid.

The process is as follows:

1. Pour the PDMS base (Sylgard 184 silicone elastomer base) followed by curing agent

(Elastomer curing agent), with the base weight at 10 times the curing agent weight.
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2. Mix for about 5 minutes making sure that the curing agent is uniformly distributed.

3. If air bubbles are observed, place the container in a degasser for about 1 hour to allow

the trapped air bubbles to escape. .

4. Spin about 5 g of the PDMS over the molds to ensure that the thickness of about 2mm.

Allow the PDMS to flow and form a blob atop the mold. Spinning will even this out, with

moderate edge bead effects, leaving a thin layer of PDMS on the SU-8 molds underneath.

5. Post-bake at 150 degrees for 6 mins.

6. Wait for the PDMS to cool, then use a sharp holder to tweak around the edges and peel

the PDMS.

7. Bond the PDMS and substrate together in an Oxygen Plasma machine using the

following standard procedure:

● Load the sample inside the plasma machine chamber

● Use a vacuum pump to pump out air from the machine’s chamber.

● Fill the chamber with oxygen at a regulated pressure of 8 psi and begin stable between

0.2~0.4 mbarr point in flow meter on the plasma machine for 20 seconds.

● Open plasma generator for 10 s.

● Ventilate the chamber, unload the sample, and bond samples.
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Figure 23 (a) Photo of a fabricated chip bonded with PDMS slabs with inputs and

outputs; (b-d) SEM images of the SU8 microstructures for capillary microfluidics and

the nanopore-sensing region fabricated from anodic aluminum oxide (AAO).

A sensor chip photo is shown in Figure 23a. Optical micrographs and SEM images of the

SU 8-based microfluidics capillary structures and nanopore-sensing elements are shown in

Figures 23b-d.
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CHAPTER 5. GENERALCONCLUSIONS

General Discussion

Chapter 2 and Chapter 3 have assessed theophylline sensitivity and dynamic range,

determined binding kinetics, tested ligand specificity, and, finally, tested influence of serum

and plant extracts. Experiments have shown that a theophylline concentration of t 0.2 µM can

be readily detected by an aptamer-based sensor. Experiments have also demonstrated good

specificity and selectivity for aptamer-based sensors. Using nanopore thin film sensors, the

experiment found that the fringes shift is ~0.2 nm when only caffeine, theobromine, and plant

extract is applied, and, conversely, the fringes shift is much greater when theophylline is added

to those solutions. This experiments reports for the first time successful use of an

aptamer-based nanopore thin film sensor for detecting theophylline in buffer and complex

fluids.

The study of Chapter 4 was very similar in style and analysis to that of Chapter 2. The

former study attempted to use an optical aptamer-based plant hormone sensor with a

microfluidics capillary interface to detect abscisic acid (ABA). My main experimental role in

this study was to design and fabricate a microfluidics capillary chip whose microfluidics

capillary interface allowed samples to be automatically delivered to the sensor without

external pumps, paving the way for point-of-use application in the field.

Recommendations for Future Research

One of the advantages described in Chapter 2 is low cost. The best way to reduce cost by

the greatest amount is to reduce the concentration of aptamer, and this can be experimentally

studied by successively reducing the concentration from 5µM to 1µM, 0.5µM,, etc., to find the

limit of detection.
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In my experiments, I already tested the concentration of theophylline in the range from

0.2 µM to 48 µM. This can be repeated to record additional data to attempt achievement of a

standardized determination of fringes shift vs concentration of theophylline. In addition, as

mentioned in Chapter 2, the nanopore size of our AAO is 30 nm to 50 nm, and the sensor’s

detection limit can be further improved by modifying the nanopore size and density and also

increasing the thickness.

Following this experiment, we can forsee much additional work. First, we can assess the

influence of RNase inhibitor on assay. Small amounts of ribonucleases (RNases) can

sometimes co-purify with isolated RNA and compromise downstream applications. Such

contamination can also be introduced via tips, tubes, and other reagents used in various

procedures. RNase inhibitors are commonly used as a precautionary measure in enzymatic

manipulations of RNA to inhibit and control for such contaminants [1]. We choose

SUPERase·In dissolved in PBS with 5 mM KCl and 1mM MgC. The test separates into two

parts. The first test is for 0µM, 4µM, and 40µM theophylline dissolved in 0.1M PH7.2 PBS

with 5 mM KCl and 1mM MgC. If it can clearly discern the fringe shifts, as the second

experiment we will add the SUPERase·In into the solution and test again and then compare the

two fringe shifts.

Finally, we can determine shelf life and the impact of storage buffer both with and without

RNase inhibitor. For this experiment, we can use a sample like the one above after finishing the

whole process for surface functionalization. We can put the sample incubator at 4 degrees over

0, 1, 2, 4, or 8 weeks.



www.manaraa.com

37

References

[1] “RNase Inhibitors” Thermo Fisher Scientific.Web. https://www. thermofisher. com/

us/en/home/life-science/dna-rna-purification-analysis/rna-extraction/rna-extraction-prod

ucts/rnase-inhibitors.html



www.manaraa.com

38

APPENDIXA. MATERIALS AND SURFACE

FUNCTIONALIZATION

Materials

1.

• 0.1 mM 11-Mecaptoundecanoic acid (HSC10COOH) and 0.9 mM

8-Mercapto-1-Octanol (HSC8OH).

✓4.3672mg in 10ml absolute ethanol to get 2mM HSC10COOH.

✓1ml 2mM HSC10COOH mix with 9ml absolute ethanol to get 0.2mM HSC10COOH.

✓31.4ul HSC8OH in 10ml absolute ethanol to get 18mM HSC8OH.

✓1ml 18mM HSC8OH, mix with 9ml absolute ethanol to get 1.8mM HSC8OH.

✓mix 10ml 0.2mM HSC10COOH & 10ml 1.8mM HSC8OH.

2. NHS and EDC

• 0.2M N-hydroxysuccinimide (NHS) and 0.05M

N-(3-dimethylamnopropyl)-N-ethylcarbodiimide hydrochloride (EDC) in dH2O o2.3018g

NHS, 0.9585g EDC dissolve in 100ml dH2O

3. 1M PH8 phosphate buffer

• 1M Na2HPO4: 56.784g Na2HPO4 dissolve in 400ml dH2O

• 1M NaH2PO4: 11.998g NaH2PO4 dissolve in 100ml dH2O

• 1M pH8 phosphate buffer: 372.8ml 1M Na2HPO4 + 27.2ml 1M NaH2PO4

4. Theophylline aptamer. [1]
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• 5’-NH2-(CH2)6-rAr GrUrGrArUrAr CrCrArGrCrArUr CrGrUrCr UrUrGrArUr

GrCrCr CrUrUr GrGrCr ArGr CrArCrU (/5AmMC6/rArGrUr GrArUrAr CrCrAr GrCrAr

Ur CrGr UrCrUrUr GrArUrGr CrCrCrUr UrGrGrCrArGrCrArCrU from IDT).

• Aptamers: theophylline = 1:2, Kd = 0.1 µM.

5. 0.1 M PH7.2 PBS with 5mM KCl and 1mM .

• 0.1481g KCl, 32g NaCl, 5.76g Na2HPO4, 0.96g KH2PO4, 0.08g MgCl2·6H2O, dissolve

in 400ml dH2O, adjust pH using KOH.

6. 1M ethanolamine (EA) dissolved in dH2O.

• 500µL EA dissolve in 9.401 ml dH2O.

Surface Functionalization and Detection.

Figure 24 is the flow chart for surface functionalization, and the protocol is illustrated in

Figure 25.

Figure 24.Flow chart for surface functionalization.
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It is a well-established method to form a mixed SAM of alkanethiols by the adhesion

reaction of the thiol group on a gold surface [1]. The monolayer is well packed and the tethered

carboxylic acid is easy to functionalize for biological molecule immobilization [2]. When

EDC/NHS is present, the carboxylic groups form active O-acylisourea intermediates, and

readily react with primary amine groups that exist at the N-terminus of each polypeptide chain

and in the side chain of lysine (Lys, K) residues. Because of their positive charge under

physiologic conditions, primary amines are usually outward-facing of amptamer; hence, they

are usually accessible for conjugation without denaturing ampater structure. In this way the

aptamer active O-acylisourea intermediate groups are deactivated by the amino acid glycine to

avoid non-specific biological attachment caused by the intermediates. At this stage, the

aptamer are conjugated to the nanostructured surface and ready for theophylline detection [3].

Figure 25.Surface functionalization procedure of the nanopore-sensing region for

detecting theophylline using aptamer.
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APPENDIX B. MASK SCHEMATICS

The Appendix B shows the other three schematic masks and also explain the meaning of

each color.

The schematic of mask 2 is shows in Figure26(a)-(d). For pump 1, each array has 16

pillars and there is a total of 32 arrays. For pump 2, each array has 20 pillars and there is a total

of 20 arrays.

(a) (b)

(c) (d)

Figure 26. (a) the pillar size. (b) the space between two array. (c) pump1. (d) pump 2.
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The schematic of mask 3 is shown in Figure27(a)-(d). For pump 1, each array has 19

pillars and there is a total of 40 arrays. For pump 2, each array has 24 pillars and there is a total

of 24 arrays.

(a) (b)

(c) (d)

Figure 27. (a) the pillar size. (b) the space between two array. (c) pump1. (d) pump 2.
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The schematic of mask 4 is shown in Figure28(a)-(d). For pump 1, each array has 24

pillars and there is a total of 70 arrays. For pump 2, each array has 31 pillars there is a total of

42 arrays.

(a) (b)

(c) (d)

Figure 28.(a) the pillar size. (b) the space between two array. (c) pump1. (d) pump 2.
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APPENDIX C. AAO FABRICATION

ITO glass substrates were purchased from Nanocs, Inc. The sheetresistance of the ITO on

the glass is 100 X/sq. The photoresist AZ1512 and AZ developer were purchased from AZ

Electronic Materialsplc. The following fluorescent dyes are purchased and used in

theexperiments: Rhodamine 6G (R6G) (Lightning Powder,Inc.), fluorescein sodium salt (FSS)

(Sigma, Inc.), fluorescein isothiocyanate(FITC) (Sigma, Inc.) and fluorescent brightening

agents(FBA) (Sigma, Inc.).The detailed new fabrication process is illustrated in Figure 29a.

TheITO glass substrate is washed thoroughly in four steps: by DI water, followed by Acetone,

IPA, and DI water insequence. After a 5-minute baking of the cleaned ITO glass, a 2 lm thick

aluminum layer is deposited by E-beam evaporationas shown in Fig. 29b. To

achievesuccessful anodization the quality of the deposited Al is critical. One essential

requirement is that the Alshould be totally oxide-free, meaning during E-beam evaporationany

oxidation of Al must be avoided or, as found in our experiments, the as-depositedAl cannot be

anodized.The other important requirement is the surface smoothness ofthe deposited Al.

Measurements have a typical roughness inthe range of 6–12 nm [1-3], smooth enough for

carryingout anodization, and not requiring further surface polishing . Thisis a significant

advantage over carrying out anodizationon a commercial Al foil sheet, which usually requires

several surface polishing steps to polish the surface of the Al sheet and ensure a sufficiently

smooth surface [4].Then we carry out anodization process (either one-step or two-step)in acid

solution (0.3 M oxalic acid) with 45 V DC voltage at 2 C to form AAO on the ITO glass

substrate, as shown in Figure. 29c.In this step, a layer of AAO is formed over the whole

substrate surface. Specifically,for the one-step anodization process to form AAO [5], weonly

carry out one-step anodization on the samples for 25, 35,and 45 min, respectively. In contrast,
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the two-step anodizationprocess to form AAO [4] takes 10 min for step-one anodizationin 0.3

M oxalic acid, followed by etching using a mixture ofphosphoric acid (0.4 M) and chromic

acid (0.2 M) at 65 C for30 min, followed by a 40-minute step-two anodization in 0.3 Moxalic

acid with the same experimental conditions as for step-oneanodization. The wafer is then

vigorously rinsed in DI water, and a 150 nm thick aluminum layer is deposited on theAAO

surface by thermal evaporation as shown in Figure 29d. Photolithographyis then performed on

the Al-coated AAO substrate. Specifically,a 1 lm photoresist (AZ 1512) layer is spin-coated

at4000 rpm on the substrate, then the coated substrate is soft bakedfor 50 s at 95 C. The

micropatterns are then transferred and generatedon the photoresist through a photomask using

a 416 nmlight exposure with a dose of 70 mJ/cm2, followed by a post-exposurebake for 50 s at

105 C. The exposed photoresist is developedand selectively removed by immersing in AZ

developer for 25 s. Thepatterned AZ resist serves as a mask to protect the Al underneath.The

patterns are then transferred to the Al layer by etchingthe unprotected Al area in an etching

solution {(H3PO4:CH3-COOH:HNO3:H2O) 80:5:5:10 by weight%} for 35 s, as shown

inFigure. 29e. During this step, care must be taken to avoid any overetchingof the Al since the

patterned Al layer serves as the maskfor etching the AAO. The substrate is then immersed in a

mixtureof phosphoric acid (0.4 M) and chromic acid (0.2 M) at 20 C for100 min to etch away

the unprotected AAO and transfer the patternsinto the AAO layer, as shown in Figure 29f.

Thereafter, the remainingphotoresist is washed away by dipping the substrate inacetone,

followed by removing the Al layer using the Al etching solution.As a result, AAO

micropatterns on the substrate areobtained as shown in Figure. 29g. Again, to obtain

AAOmicropatterns with high fidelity, the steps for etching Al andAAO are critical, and the

etching time should be optimized. Otherwise,the resulting AAO micropatterns might be either
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over-etched orunder-etched. In addition, Al is chosen as the mask for the AAOlayer instead of

the photoresist as described earlier since the thicknessof AAO is 2.5 lm [6-9]. It has been found

that in mostcases the photoresist cannot serve as a robust mask due to the longetching time

(100 min) of the AAO layer. As a result, the micropatternscannot be properly transferred

directly from the photoresistto the AAO layer.

Figure 29.Sketch of the fabrication process flow forAAO micropatterns.
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